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ABSTRACT: While graph interaction networks achieve exceptional results in Higgs boson iden-
tification, GNN explainer methodology is still in its infancy. To introduce GNN interpretation to
the particle physics domain, we apply layerwise relevance propagation (LRP) to our existing Higgs
boson interaction network (HIN) to calculate relevance scores and reveal what features, nodes, and
connections are most influential in prediction. We call this application HIN-LRP. The synergy be-
tween the LRP interpretation and the inherent structure of the HIN is such that HIN-LRP is able
to illuminate which particles and particle features in a given jet are most significant in Higgs boson
identification. The resulting interpretations are ultimately congruent with extant particle physics
theory, with the model demonstrably learning the importance of concepts like the presence of muons,
characteristics of secondary decay, and salient features such as impact parameter and momentum.

I. INTRODUCTION

Graph neural networks (GNN) are notoriously di�cult
to interpret [1 and 2], and those employed in the particle
physics domain are no di↵erent. The graph interaction
network has gained popularity with high energy physi-
cists studying fundamental particles because this graph
model achieves a highly competitive accuracy, while still
working with relatively simple and unprocessed data [3].
However, it is often not fully understood how or why the
Graph Interaction Networks make their classifications,
or how these models’ inner workings might relate to the
physical properties of the universe.

The Higgs boson interaction network (HIN) is one such
model that we seek to apply the latest research in graph
explaining to. The purpose of the HIN is to determine
whether or not a given jet, or spray of particles, decayed
from a Higgs boson. The implementation examined in
this paper is a simplified version of the HIN created in
“Interaction networks for the identification of boosted
H ! b̄b decays” [3].

Our HIN intakes one graph input and is trained solely
on track/particle level features. The graph input repre-
sents a single jet instance, where each of the fully con-
nected nodes is a particle, as in Figure 1. As an output,
the HIN returns a classification: whether or not the ori-
gin of the jet decay was the elusive Higgs boson, or simply
background noise. Specifically, the HIN is trained on a
particular permutation of the Higgs boson decay known
as H ! b̄b, where the Higgs boson decays into b hadrons.

We seek to use layerwise relevance propagation (LRP)
to explain the decision making process of the HIN.
LRP can interpret even highly complex deep learning
networks with a strategic application of propagation
rules based on deep Taylor expansion [4].

FIG. 1. Feature values X1, X2, etc. are regrouped under
nodes such that one node is a particle, connected with direc-
tional edge weights.

Historically, LRP has been advertised as a way to
find and eliminate arbitrary or extraneous features
in a complex neural network. However, with respect
to our HIN, we are specifically interested in how the
LRP can reveal the most important nodes and edges
for predictions, which would essentially represent the
individual particle importance as well as the particle-
particle relationships that are particularly representative
of Higgs boson decay, at least to the HIN model. That
is to say, it is very possible that we would see known
physics phenomena reflected in the decision making of
the Higgs boson interaction network.

II. RELATED WORK

GNN interpretation is a relatively new domain, largely
kicked o↵ by GNNExplainer in 2019, an interpretation
methodology that approached the problem by taking a
GNN and returning a salient graph substructure and
its most influential node features [1]. We considered
this a strong candidate for our model for a time, but
were ultimately uncertain about how GNNExplainer’s
substructure strategy would react to a fully connected
interaction network with essentially no preordained
substructures. PGExplainer builds o↵ of GNNExplainer
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FIG. 2. HIN model architecture. Note the skip in layer indices, e.g. edge mlp 0 to edge mlp 3; the skipped layers edge mlp 1

and edge mlp 2 are represented by the nonlinear mapping ⇢, and merged with the closest linear layer preceeding them during
the LRP computation. n represents the number of tracks in an arbitrary jet; � encodes the nonlinear operation of a layer-wise
normalization followed by ReLU. 128 is the dimension of the hidden layer abstract space. 48 is the number of particle features
that can be found in a node. The blue pathways highlight the propagation relatively unique to GNNs, where an earlier input
is reused multiple times through the layers.

conceptually, with an additional focus on creating
a heuristic for generalized model analysis instead of
instance based analysis [2]. We feel that, like GN-
NExplainer, this also model has merit—but ultimately,
among several other emerging options for GNN interpre-
tation, we decided to look in the direction of layerwise
relevance propagation.

Layerwise relevance propagation is actually a broader
technique that has existed outside of the GNN context
and has successfully been used to analyze a variety of
model types, particularly convolutional neural networks
[4]. More recently, LRP has been applied in the context
of GNNs, such as in the case of GNN-LRP, which
optimizes LRP for GNNs by holistically analyzing graph
pathways, or “relevant walks” [5]. LRP has also seen
usage in the chemistry domain, where it is implemented
on a similar “InteractionNet” GNN to ours, except
instead of particle relationships it focuses on molecular
structures where edges are bonds [6].

Jet tagging uses machine learning to help classify parti-
cle collision events in an e�cient and automated way. For
a time, the success of these models depended on train-
ing with specially crafted features, where physics domain

expertise plays a substantial role in aggregating and pri-
oritizing useful information for the neural networks. The
interaction network we explore here is notable for finding
success training on more fundamental level features, par-
ticularly in the case of Higgs boson classification [3]. As
far as jet tagging is concerned, layerwise relevance propa-
gation has been used on CNNs and RNNs (convolutional
and recurrent, respectively) in the particle physics do-
main [7], but less so for GNNs. As such, our goal is
to make that step by applying LRP to the Higgs boson
interaction network in this paper.

III. HIGGS BOSON INTERACTION NETWORK

The Higgs boson interaction network, or HIN, is
programmed using PyTorch Geometric, which is a
streamlined package specifically meant for GNN imple-
mentation [8]. PyTorch Geometric simplifies both the
creation of the particle-particle interaction graphs and
the training of the model itself. Jet entries in the data
are comprised of track level features, tracks being the
reconstructed pathways and measurements for a given
particle. When the track features are adapted for the
GNN, each jet level entry becomes a particle-particle



3

FIG. 3. ROC AUC for the Higgs boson interaction network.
The dash line in red serves as a baseline reference.

interaction graph representing the relationships of every
particle to all other particles in the graph bidirectionally.
Every track gets its own node, and for each track, the
features are regrouped under the corresponding node.
Broadly, graph models are desirable for jet represen-
tation because they reflect the absence of an inherit
ordering in the jets.

After processing the data into graphs, we use PyTorch
Geometric to train the GNN by passing the data through
three function blocks: and edge block, node block, and
global block. As in Figure 2, the model’s forward
propagation adjusts corresponding edge weights, node
weights, and global weights in each block in accordance
with encoded transformation sequences: concatenations,
linear transformations, batch normalizations, and ReLU
activations. These transformation functions constitute
the pathways that LRP will backpropagate across in
order to acquire relevancy scores, which we will elaborate
upon in the next section.

As seen in Figure 3, the interaction network performs
exceptionally well, with a 99.0% AUC. This is what we
would hope to see from what has experimentally yielded
some of the best performance for Higgs boson identi-
fication thus far [3]. However, we still need layerwise
relevance propagation to uncover how exactly the HIN
is accomplishing such invaluable performance.

See Appendix A for additional context for the model
training.

IV. LAYERWISE RELEVANCE PROPAGATION

LRP essentially redistributes relevance scores back-
ward, starting from the model output, passing through
the layers, all the way to the input. Each layer’s rele-
vance score is propagated from the layers closest to out-
put, through the hidden connections, to the current layer,
and at each juncture such the sum of the relevance score
is kept approximately the same. The foundation of LRP
is built o↵ of deep taylor expansion, taking gradients at
each layer to deduce activation with respect to the fol-
lowing layer. Because LRP traverses the entire model,
we can calculate relevancy for every edge, every node,
every node feature, and more.

A. Conservation Law

The flow of the relevance scores as it is backpropagated
is analogous to the flow of water in a river: the total
amount is conserved as it flows through the forks. This
is described as a conservation property for LRP [4]. As
such, the partial relevance scores ultimately attributed
to the raw input from di↵erent paths should be directly
summed up to approximate the actual prediction score
of the output.

There is a distinction to acknowledge in applying
LRP to GNNs, such as our Interaction Network, as
opposed to other deep learning frameworks, like CNNs.
Other models have a more straightforward layer by layer
propagation, whereas the HIN re-propagates certain
layers, particularly the input and the input source
node transformation, reapplying those values in multiple
instances across the block layers (see the blue highlighted
pathways in Figure 2). This can be thought of as a
weight sharing, and it a↵ects the consideration of the
conservation property. Namely, LRP backpropagation
reaches the input from multiple pathways, and each
occurrence must be considered in the conservation
calculations.

Figure 4 depicts an example of one backpropagation
step in LRP. For an arbitrary node in Layer j, call it vj ,
it receives the relevance scores from all the nodes that
connects to it from the layer k that follows it. Hidden
layer k, like other layers, draws from the output of an ad-
jacent layer in activation from layer j, but unlike other
layers, also pulls from the raw input. Thus, when propa-
gating the relevance score through the model backwards,
the relevance score Rk is split into two parts, R

0
k and

Rsrc, among which R
0
k flows into layer j and the other

layers beneath it, and Rsrc is attributed directly to the
input.
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FIG. 4. Relevance propagation from Layer k backwards into
Layer j and input. In the forward pass k sources from both
Layer j and the input, so the relevance propagation would
work accordingly. Intuitively, Rk = R0

k +Rsrc

B. LRP-✏

LRP methodology provides several propagation rules
that are outlined in “Layer-Wise Relevance Propagation:
An Overview” [4]. In the case of the HIN, we apply
a variant of the LRP-✏ rule uniformly on the layers in
our model, layers which can be roughly divided into
two types: simple linear layers, and normalized rectified
linear layers. For example, in our LRP propagation,
edge mlp 3 is one of the simple linear layers; on the
other hand, edge mlp 0 is joined with the nonlinear
operation � (batch normalization followed by ReLU
activation) into a normalized rectified linear layer.

Denote the relevance score of node vi in layer j as
(Rj)i, which can be computed as a proportion of the
relevance score from the following layer, layer k. As
shown, the amount of contribution can be conveniently
computed by a forward pass. The LRP-✏ rule for a given
layer is as follows:

(Rj)i =
X

u,9(i,u)

(ajwT
j )iu(Rk)u

✏0 +
P

u(ajw
T
j )iu + bj

where ✏
0 = ✏ · sign(

X

u

(ajw
T
j )iu + bj)

Here aj stands for the input at layer j, wj and bj

respectively stand for the weight and bias at layer j. ✏

is introduced in the denominator with an appropriate
sign to absorb some of the relevance score as well as to
prevent division by zero, in accordance with the epsilon
rule. Bold typeface indicates when the variables are
tensors instead of scalars.

The proportion calculated in the LRP-✏ rule follows a
“gradient⇥input” convention to find out how each part
of the input contributes to the layer activation, by com-
puting by the product of the layer input and the partial
derivative of the layer output with respect to the layer
input. The partial derivative of the layer output can be
viewed as “the rate of contribution to the activation” and
thus the product can be viewed as the particular amount

of contribution of the part of input towards the layer ac-
tivation. For an arbitrary linear layer j, represented as a
linear function ⇢ of layer input aj,

⇢(aj) = ajw
T
j + bj

@

@aj
⇢(aj) =

@

@aj
(ajw

T
j + bj)

= wT
j

) aj ·
@

@aj
⇢(aj) = aj ·wT

j

C. Node and Edge Relevance

Following the paths illustrated in Figure 2 backwards,
we can obtain several partial relevance scores from layers
node mlp 2.0, node mlp 1.0, and edge mlp 0, which
we denote R0

input,R
0
src,Rsrc,dest respectively. While the

partial relevance score R0
input from node mlp 2.0 is di-

rectly attributed to the raw input, the scores attained
from node mlp 1.0 and edge mlp 0 correspond to the
relevance of the edges. Thus, the edge relevance score
can be obtained by aggregating R0

src and Rsrc,dest. To
quantify the relative relevancy of each edge in a particu-
lar jet graph to the classification, we introduce the edge
significance, Sedge, computed as follows:

Let Redge = Rsrc,dest + [R0
src, In·(n�1)],

8i 2 [0, n · (n� 1)], (Sedge)i =
||(Redge)i||FP

j(Sedge)j
.

Here Redge is a matrix with dimension
(n(n � 1), 48 + 48), in which the first 48 columns
are source node features of the directed edge and the
last 48 columns are destination node features. The idea
of Sedge is to measure the importance of the edge by the
amount of information flow through it in the decision
making process.

The node relevance map Rnode can be computed by
joining the edge relevance scores with the partial input
relevance score. To attribute relevance score for each
node feature, the edge relevance scores are aggregated
by taking the mean with respect to their corresponding
nodes:

Rnode = R0
input

+ scatter mean(R0
src, src)

+ scatter mean(Rsrc,dest[:, : 48], src)

+ scatter mean(Rsrc,dest[:, 48 :], dest)

Here src and dest are the node indices of the source
and destination node of the directed edge.



5

FIG. 5. Rnode heat map of IN trained on dummy input. Note
that the relevance scores are concentrated in the 4th column,
which corresponds to feature3

D. LRP Dummy Model

To verify the validity and to evaluate the primary
output, Rnode, we designed the LRP dummy model.
The dummy model has the exact same architecture as
our HIN, but is trained on synthesized data instead.

The synthesized dummy data mimics the actual data,
with 48 features and a fixed number of 10 tracks per
jet. The entries of all features except feature 0 and 3 are
all meaningless Gaussian noise with mean set to 0 and
standard deviation set to 1. Feature 0 and 3 are designed
to represent meaningful measurements, taking up values
in {0, 10} and {�20,�10, 0, 10} respectively. The label y
of each jet is computed as following,

y = sign(
1

10

9X

i=0

feature0 + 2⇥ feature3)

Notice that even though feature0 is involved in the
formula, it is completely dominated by the value of
feature3. Therefore, we would reasonably expect to see
that Rnode should have large magnitudes at column 3
only. Figure 5 shows that we are able to capture the
contribution of feature3 to the prediction, with a rea-
sonably small amount of noise.

V. RESULTS

The biggest question of this project is whether or not
the application of layerwise relevance propagation would
bear fruit when applied to the Higgs boson interaction
network. The specific goal is that on a case by case ex-
amination of inputs, we can understand the physics con-
cepts that the HIN is determining to be most valuable.
We explore validity of layerwise relevance propagation’s
interpretation of the Higgs boson interaction network in
HIN-LRP.

A. HIN-LRP

Since LRP is applied on an instance level, it gives us
GNN analysis on a jet by jet basis. So for our HIN, we

get a relevance map that corresponds directly to the
shape and values of a given jet input. And thanks to
the organization of the jet graph input, the HIN-LRP
interpretation of a jet essentially enumerates exactly
which particles and aspects of those particles are most
important to whether it is a Higgs boson signal.

We present the interpretation result of each jet as a
pair visualization of with a heat map and a 3D network
plot. The heat map plots a saliency matrix such that
every individual input relevance score is clearly laid
out. The tracks are left to right ordered by increasing
momentum (track pt). The more intense the color in
a cell the more relevant that entry of the input is to
the Higgs probability output. Notably, positive and
negative activation is not responsible for corresponding
positive and negative Higgs signal labeling, all magni-
tudes are significant. The 3D plot is a combination of
physical space on the xy plane with polar-esque values
of track phirel and track etarel, with momentum
once more on the z axis. Here, the relevance of a node
is summarized by the norm of its features and depicted
with size. The edge significance Sedge is highlighted in
red above a threshold of relevance and a simple gray
below, with a low uniform color intensity.

Momentum plays a major role, tying the readability
of the graphs together, because it is well known that
high momentum particles are often representative of a
jet’s character. And indeed, it is often the case that
high momentum particles are associated with high
relevance scores. Momentum sort is present in the axes
of both plots to unify the sense of which particles and
connections are most responsible for the classifications.

The LRP visualizations show a promising correlation
to what is understood about the physics behind Higgs
boson to b hadron decay. Many of the graphs are
activated along two columns, which may suggest that
the HIN is recognizing two major prongs in the jet, po-
tentially representing the paths of each b hadron. When
a given input is highly dependent on a single feature, it
is often what a physicist would expect to be important:
momentum, impact parameter, energy level. The
model even recognizes the importance of electrons and
muons—since these are frequently present in the decay of
the b hadron, there is a good chance that a Higgs boson
too may have been involved. These concepts are well
understood by domain experts, but it is only with HIN-
LRP that we can see through the eyes of the model itself.

Below, we have selected just 4 jets (among millions)
that the HIN is most confident in labeling as Higgs
boson signals to interpret and visualize below, in order
to connect the major driving forces for the model’s
decisions with physics theory.

See Appendix B for feature definitions.
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FIG. 6. relevance heat map of selected jet 1.

FIG. 7. edge significance and node relevance of selected jet 1 in 3D
space

FIG. 8. relevance heat map of selected jet 2

FIG. 9. edge significance and node relevance of selected jet 2 in 3D
space
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FIG. 10. relevance heat map of selected jet 3

FIG. 11. edge significance and node relevance of selected jet 3 in
3D space

FIG. 12. relevance heat map of selected jet 4

FIG. 13. edge significance and node relevance of selected jet 4 in
3D space
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B. Visualizations

Figure 6 and 7 show the interpretation result of
selected jet 1, for which the model is more than 99.9%
confident in its prediction. The colored cells are mostly
distributed in columns 14 and 21, suggesting that those
two nodes are most relevant to the prediction. This
aligns with the intuition that the model is perceiving
the two pronged nature of Higgs bosons decaying into
2 b hadrons. Note how the highest momentum node
is the most important, and in the 3D space we see the
edge connecting to this node to be highly activated.
Physicists have shown that Higgs boson decay products
are likely to have larger transverse momentum value
relative to the jet axis [9].

Figure 8 has all the relevance scores attributed among
only two columns, again alluding to the two pronged
decay into b hadrons. In other words, those two particles
are the most significant nodes in the prediction, some-
thing that is clearly a�rmed in Figure 9’s 3D plotting.
Notably, it is the lower momentum tracks in this jet that
are more responsible for classification, but even in this
situation momentum itself is a highly relevant feature.

Figures 10 and 11 show the interpretation result of
a Higgs boson jet that the model believes with 99.9%
confidence is a signal. Note that in bottom right of
Figure 10, the cell corresponding to node 19 and feature
track isMu is colored a rather dark shade of blue, sug-
gesting that this entry has been particularly important
for the model to classify the jet as a signal. A quick
examination of the raw data shows that the entry is 1
in the corresponding position, meaning that node 19 is
a muon. This matches with the theoretical expectation
that the presence of a muon among the decay products
is a strong indicator of the jet being related to a Higgs
boson [9].

Figure 12 shows how, in track 19, the HIN utilizes a
host of positional information like momentum, track pt,
angle from jet (track DeltaR, track EtaRel), angle
from secondary vertex (track drminsv), all to classify
the Higgs boson sginal with great confidence. Alongside
this positional information in track 19 is the boolean for
whether the track is ”pileup-like”, or more colloquially,
an intrusive track from separate jet decay. This indicates
that the model understands that the aforementioned po-
sitional features are only helpful given that this track is
actually native to the jet being analyzed. In track 18, the
binary feature track isEl is also hugely important for
making the classification decision. track isEl encodes
whether the given particle is an electron, which, similar
to muons, is a strong indicator of the jet being related to
a Higgs boson when it is present [9].

VI. CONCLUSION

We presented a specific way to interpret the inner
workings of the Higgs boson interaction network through
layerwise relevance propagation, and have found that
the methodology does, to a significant extent, reflect
the foundations of theoretical physics that the model is
trained on. With a simple application of just the LRP-✏
rule, we now have the ability to visualize the relevance
of any given jet graph input with respect to how likely it
is to be a Higgs boson signal. Our implementation code
can be found here [10].

The Higgs boson interaction network itself was trained
on a simulated dataset from the CMS Collaboration’s
Open Data Portal. It was implemented with PyTorch
Geometric and directly built from prior work establish-
ing the primacy of interaction networks for Higgs boson
signal classification [3].

This is first and foremost a foray into LRP GNN in-
terpretation for a hyper specific purpose: Higgs bosons
decaying into b hadrons. HIN-LRP successfully asserts
the value of layerwise relevance propagation for providing
transparency regarding how well GNNs perceive the rules
governing particle collision and decay. Our techniques
can potentially be applied to more deeply understand a
model, optimize or reduce features necessary for train-
ing, and, within the particle physics domain, thoroughly
compare the essence of varied jet inputs. HIN-LRP could
benefit greatly from a way to generalize the results across
the millions of jet entries to paint a bigger picture. All
said, GNN interpretation is constantly innovating, and
the tactics we have outlined can be further refined along-
side the latest methodologies—varied LRP rules [4], gen-
eralization heuristics [2], relevant walks [5]—to gain an
even deeper understanding of how deep learning comes
to understand the laws of physics.
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Appendix A: Higgs Boson Interaction Network

1. Data

This Higgs boson interaction network was trained
on a monte carlo of the CMS collaboration’s collision
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TABLE I. Definitions of the features mentioned in this paper

track pt Transverse momentum of the charged PF candidate
track etarel Pseudorapidity �⌘ of the track relative to the jet axis
track phirel Azimuthal angular distance �� between the charged PF candidate and the AK8 jet axis
track isMu Boolean that is 1 if the charged PF candidate is classified as a muon
track isEl Boolean that is 1 if the charged PF candidate is classified as an electron

trackBTag EtaRel Pseudorapidity �⌘ of the track relative the AK8 jet axis
trackBTag PtRel Component of track momentum perpendicular to the AK8 jet axis
track DeltaR Pseudoangular distance (�R) between the charged PF candidate and the AK8 jet axis
track drminsv Minimum pseudoangular distance (�R) between the associated SVs and the charged PF candidate

simulation data. The CMS collaboration simulates col-
lision events in a ground up fashion based on confirmed
physics theory [11]. A benefit of this is that we can also
lessen the rarity of the Higgs boson signal, such that it’s
actually useful to train this model. After many events
are generated with the simulators, the most relevant
jets are filtered through with a particle-flow algorithm
that removes a certain amount of collision noise. Sim-
ulations are the preferred training data because the
LHC produces approximately 10 quadrillion collisions
per year, resulting in petabyte level amounts of particle
data that are impractical to train on. Additionally,
the actual data has an extremely imbalanced class
ratio (approximately 99 to 1), as the Higgs boson is an
extremely rare occurrence in real collision events.

Training models on the actual data would potentially
result in a model with high accuracy, but low precision.
Also, by using simulated data, we can concentrate
solely on jets, because the actual LHC data often seeks
to observe many other kinds of data. With all these
considerations, we sourced the simulated data from the
CERN Open Data Portal, and pulled out approximately
3 million jet entries. The particular Higgs boson event
we draw from is the decay into b hadron pairs (H ! b̄b),
with background collision noise (QCD).

The Interaction Network ultimately trained on approx-
imately 2 million jet entries, and evaluated on a ran-
dom subset of 128000 jets due to time complexity. IN
is trained with batch size of 128 jet particle-particle in-
teraction graphs for 10000 minibatches per epoch (20%
of the mini batches are put aside for validation purpose)
with Adam optimizer and an initial learning rate of 10-4.
We had planned for 150 epochs for the model with early
stopping, but it actually converged quickly to a desirable
result in less than 10 epochs.

2. Model

The edge, node, and global block structure is facil-
itated heavily by PyTorch Geometric abstraction, and
further context for can be found in the documentation for
PyTorch Geometric’s Metalayer function [12], as well as

the paper it was based on: “Relational inductive biases,
deep learning, and graph networks” [13].

Appendix B: Selected Feature Definitions

See Table 1, or the complete CERN feature sheet
at: [14]

Appendix C: Project Proposal

Deep learning (DL) has commonly been regarded
as a black box. By black box, we mean that we lack
full understanding of how it works, despite knowing
that it can produce outstanding performance. After
implementing a successful GNN classifier for identifying
Higgs bosons, we are left wondering how exactly our
model makes the decisions. While there is an awareness
in the physics domain that mass and momentum are
large factors, it is di�cult to understand concretely how
the graphs weigh the features, especially since the more
commonly understood features are usually decorrelated.
We can look at the very model we just created, and
with the same data, see if we can explain the model’s
understanding of Higgs boson jets. Is there potential
for furthering the physics domain’s understanding of the
problem by explaining the model’s composition?

This approach to deep learning is not exclusive to
particle physics, it also applies to general applications
of DL in di↵erent fields. Explainable DL models are
becoming more and more popular recently, as people
begin to notice its potential to understand various
problems when the neural network’s structure is more
transparent.

Deep learning is still quite new, and deep learning
interpretability is even newer, but quite a lot research
has been done to interpret deep learning models. Many
papers have already been written on understanding
CNNs through the visualization of the network’s ac-
tivation, producing images that peel back the curtain
on the neural net’s mind. Unfortunately, we have
far less understanding of how GNN works—the graph
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representation of the hidden layers are not as intuitively
visualizable as feature maps of images in CNNs. And so
we lack a comprehensive explanation of the Interaction
Network we implemented for jet identification.

We know that a major advantage of IN is its ability to
learn from low level features that are closer to the raw
measurements from the collider, i.e. it does not depend
as much on expert knowledge as the previously used clas-
sical ML solutions. We propose that by understanding a
trained IN, we could potentially gain more insight into
both the physics problem itself and possible direction
for further improvement of the model. We hypothesize
that we could render a “most signal looking input” or
the graph that our model most strongly associates with
the Higgs to b hadron decay.

Instead of studying a general question on how to
explain the behavior of graph nets, we want to focus on
the interpretation of the GNN based IN. A unique and
good thing about studying IN is that, unlike many other
GNNs, we have a rough expectation on its behavior
based on existing particle physics theories. Probing into

a trained IN, we expect to see that it actually learns
the expert crafted variables from the raw input data,
and it learns to distinguish the significance of di↵erent
features; we also expect to discover something new or
unexpected about the interaction of certain low level
features. There is a potential to perceive actual physics
phenomena by understanding how the GNN gets trained
in a more coherent way.

Though explaining GNN is a relatively untapped mar-
ket, there are plenty of new and exciting reference points
for us to reasonably build from. There is a long history
of visualizing jets with image abstractions, so the hy-
pothetical “most signal input” would have a straightfor-
ward extant visualization method. PyTorch Geometric
does provide avenues to explain GNNs based on a paper
that highlights and visualizes the most activated subsets
of GNNs, which would synergize nicely with our exist-
ing PyTorch model. And just the other week a physics
domain related paper was published about “Explainable
AI for ML jet taggers using expert variables and layer-
wise relevance propagation” [7], which closely relates to
the classical ML model we implemented with XGBoost
in our replication.
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